
POMAR: Compression of Progressive Oriented Meshes Accessible Randomly

Adrien Magloa, Ian Grimsteadb, Céline Hudelota

aMAS laboratory, Ecole Centrale Paris, France
bCardiff School of Computer Science & Informatics, Cardiff University, United Kingdom

Abstract

This paper presents a new random accessible and progressive lossless manifold triangle mesh compression algorithm
named POMAR. It allows to extract different parts of the input mesh at different levels of detail during the decom-
pression. A smooth transition without artefacts is generated between adjacent regions decompressed at different levels
of detail. Our approach allows selective decompression with low delay and compares favourably to previous random
accessible and progressive schemes in terms of compression rates.

1. Introduction

With the ever-increasing precision of 3D meshes in
application domains such as computer-aided design,
simulation, medical imaging, digital heritage and en-
tertainment, solutions must be found for their efficient
storage, transmission and visualization. Lossless mesh
compression allows the size of the input data to be re-
duced without losing any information, except a tolerated
geometry quantization. Therefore it lowers mesh stor-
age and transmission costs. Static mesh compression
codecs can be divided into four types:

Single-rate algorithms build a compact representation
of a mesh. The input mesh is fully restored after
the decompression.

Progressive algorithms allow successive levels of de-
tail to be rebuilt as more data is decompressed.

Single-rate and progressive algorithms need to de-
compress the full model to access a specific region.

Random accessible algorithms allow to decompress
only parts of the mesh that interest the user. They
allow an efficient access to the requested regions of
the mesh, but the user does not have any overview
of the other regions.

Progressive and random accessible algorithms com-
bine the features of the two previous types of
codecs. They provide an efficient access to the re-
quested regions and an overview of the other re-
gions. The user can select the decompression level
of detail for each part of the mesh. Few approaches
have been proposed in the literature.

Figure 1: Selective decompression (bottom) of the original raptor
model (top) compressed at 15.0 bits per vertex with a 12 bit quan-
tization.

In this paper, we describe a new algorithm, called
POMAR, that belongs to this last category: it enables
the progressive and random accessible decompression
of manifold oriented triangle meshes. During the de-
compression, each region of the mesh can be decom-
pressed at the level of detail requested by the user. The
restriction is that two adjacent regions must have at most
one level of detail of difference.

Preprint submitted to Computer & Graphics May 30, 2013



POMAR has been designed for efficient mesh stor-
age and transmission but it also offers interesting fea-
tures for the interactive visualization. It generates de-
compressed models with visually good triangles and
no artefacts. Unlike some previous approaches, no
post-processing operations have to be performed on the
boundary between the regions decompressed at different
levels of detail. The decompression algorithm requires
a low delay and produces smooth transitions between
the fine and coarse regions of the mesh.

This paper begins with a study of the related work fo-
cused on progressive and random accessible mesh com-
pression. After a general presentation of the proposed
scheme, the decimation algorithm, the compression and
decompression are described. The influence of the num-
ber of clusters for the random-accessibility is then stud-
ied. Finally, the article ends with some experimental
results, a discussion and a conclusion.

2. Related work

Since the end of the 1990’s, mesh compression has
been an active research topic. A good review can be
found in [1]. Single-rate schemes mainly target the re-
duction of the mesh storage size. This is often achieved
at the cost of inserting dependencies between the mesh
simplices. Consequently, if the user wants to access a
specific part of a mesh, he must wait for the decom-
pression of the whole mesh. When the mesh is big,
the decompression can be time and memory consuming.
Some out-of-core approaches such as streaming mesh
compression [2, 3] have a limited resource usage, but
the data dependency is still persistent.

2.1. Random accessible mesh compression
The aim of random accessible mesh compression is

to partially remove the dependencies between the mesh
elements. Before the decompression, the user can select
which regions of the mesh he is interested in and the
algorithm will decompress just these. Two paradigms
were proposed in the literature: the cluster-based and
the hierarchical representations.

The algorithm of Choe et al. [4] first segments the in-
put mesh and compresses the obtained clusters using a
single rate codec [5]. In order to not duplicate the geom-
etry information of the border vertices, their positions
are compressed independently. The connectivity be-
tween the clusters is encoded in the form of a polygonal
mesh. Experimental results show that this method has a
small overhead that increases with the number of clus-
ters. Yoon and Lindstrom also built a cluster-based ran-
dom accessible compression scheme [6]. Their method

allows to keep the mesh in a streaming format [2] as
it is based on streaming mesh compression [3]. Nev-
ertheless, the compression rates are adversely impacted
compared to the approach of Choe et al. [4].

Courbet and Hudelot proposed in [7] a hierarchical
mesh representation. The input mesh is recursively split
into two partitions until each partition contains only one
polygon. Each of the generated sub-meshes can be de-
compressed independently. The random accessibility
granularity is high and polygon meshes can be com-
pressed. However, the compression efficiency for tri-
angle meshes is inferior to cluster-based approaches.

2.2. Progressive mesh compression

Progressive mesh compression techniques allow the
extraction of levels of detail during the decompression.
The user can see the mesh refining while data is received
and decompressed. Levels of detail are also interesting
for interactive visualization. Depending on the view-
point or the visualization device capabilities, the most
appropriate level of detail can be displayed. The main
focus of progressive mesh compression algorithm is to
achieve the best rate-distortion performance. The gen-
erated levels of detail must be as close as possible to the
initial mesh.

Hoppe first introduced the concept of progressive
meshes [8]. During the compression, the input mesh
is simplified using the edge collapse operator until the
base mesh, which is a coarse version of the original, is
obtained. The decompression starts from the base mesh
and the vertex split operations, the reverse of the edge
collapse operations performed during the compression,
are progressively decoded and performed until the ini-
tial mesh is restored. Hoppe’s method has the advantage
of having a high progressiveness granularity but later
methods obtained better compression rates.

The progressive forest split representation of Taubin
et al. [9] encodes a manifold triangular mesh with a base
mesh and a sequence of forest split operations. The for-
est split operation consists of cutting the mesh through
several sets of connected edges, filling the generated
holes with triangles and relocating the vertices. Pajarola
and Rossignac [10] proposed to perform as many as pos-
sible edge collapse operations to generate new levels
of detail. Vertex splits are then encoded by construct-
ing a vertex spanning tree on the mesh and storing each
split vertex. The algorithm of Alliez and Desbrun [11]
removes vertices at the centre of patches and retrian-
gulates the remaining holes. The connectivity of the
mesh is encoded with the valence of the removed ver-
tices. The geometry is encoded by the vector between

2



the patch barycentre and the position of the removed
vertex.

Gandoin and Devilliers [12] and then Peng and Kuo
[13] based their algorithm on a space subdivision ap-
proach by using spatial kd-tree and octree data struc-
tures respectively. These methods produce high com-
pression ratios. However the rate-distortion perfor-
mance at low rates suffers of the low geometry quan-
tization of the first levels of detail.

Wavelet decomposition techniques are traditionally
reserved for progressive compression of semi-regular
meshes. Nevertheless, Valette and Prost proposed the
Wavemesh algorithm [14] that contains a wavelet for-
mulation with a lifting scheme for the compression of
irregular meshes.

Valette et al. [15] redefined the problem of progres-
sive mesh compression to a mesh generation problem.
In their approach, the mesh is first simplified to obtain
the base mesh. The compression algorithm progres-
sively adds vertices to build an intermediate mesh that
is as close as possible to the initial mesh. The initial
connectivity is restored by flipping edges where needed
when all the vertices have been added. This technique
leads to good rate distortion performance.

More recently, Maglo et al. [16] proposed an algo-
rithm that can compress manifold meshes with arbitrary
face degrees. The compression algorithms decimates
the input model with a specific local operator which
combines vertex removal and polygonal remeshing.

2.3. Progressive and random accessible mesh compres-
sion

As explained above, random accessible mesh com-
pression schemes allow the decompression of only the
required parts of the mesh, but they do not provide any
overview of the other parts. Progressive mesh compres-
sion techniques allow levels of detail to be extracted
during the decompression. However the full mesh must
be decompressed even if only a specific part is required
at the finest level of detail. These drawbacks are ad-
dressed by the combination of progressive and random
accessible techniques, which allow the decompression
of different parts of a mesh at different levels of detail.

Kim et al. [17] proposed a multiresolution random
accessible mesh compression algorithm based on their
previous mesh refinement framework [18]. During the
decompression, a vertex can be split even if its neigh-
bours are not identical to the neighbours when the edge
was collapsed. This approach leads to a fine-grained
multiresolution random access. It breaks the traditional
progressive mesh symmetry of operations but the com-
pression performance is limited.

The CHuMI viewer from Jamin et al. [19] parti-
tions the mesh bounding box into a hierarchical struc-
ture called the SP-tree. Each SP-cell has a minimum
quantization precision. The vertices that belong to sev-
eral SP-cells are duplicated to allow independent decod-
ing of each cell. SP-cells are encoded with the original
Gandoin and Devilliers algorithm [12]. After the de-
compression, the difference of resolution between adja-
cent SP-cells is corrected by moving vertices of the cell
at the highest resolution.

The approach of Du et al. [20] decomposes the kd-
tree of the original Gandoin and Devilliers algorithm
[12] into two layers. The top tree and each child sub-
trees are compressed independently to enable the ran-
dom access. The border vertices of each sub-tree cell
can be decompressed separately from its internal ver-
tices. The sub-trees must be compressed and decom-
pressed in a canonical order. Thus, to fully decompress
a requested sub-tree, the border vertices of the previ-
ous sub-trees in the set order must also be fully decom-
pressed. These vertices can be later collapsed if the user
does not want them. As this scheme does not dupli-
cate the border vertices, the compression performance
should be higher to the one of the CHuMI viewer [19].
Yet, the prefix dependency implies that not requested
data must be decompressed.

Maglo et al. [21] extended the cluster-based random-
accessible approach from [4] to support the progressive
compression of the clusters. They replaced the original
single-rate cluster compression algorithm by a progres-
sive one [22], which is based on [11]. This approach,
as the original, integrates a time consuming clustering
step. Once the clusters are decompressed at the targeted
levels of detail, a post-processing step needs to stitch
together the parts in order to fill the boundary holes.

2.4. Data structures for view dependent visualization
Progressive and randomly accessible compact mesh

data structures were also studied in the context of visu-
alization. Most of these structures are not compressed
but they allow the rendering of huge meshes by dynam-
ically coarsening and refining the mesh regions depend-
ing on the visualization view point.

Based on progressive mesh [8], the VDPM data struc-
ture [23] allows local refinements by encoding the de-
pendency between vertex splits. An extension for huge
terrain grid rendering that allow out-of-core processing
and geomorph transitions was then proposed in [24].
Pajarola later described the FastMesh data structure
[25, 26] that requires less memory than VDPM. How-
ever it is restricted to manifold meshes as it is based
on an halfedge data structure. The method proposed

3



by Yoon et al. [27] first clusters the input mesh and
then builds a progressive mesh representation for each
cluster. Guthe et al. [28] used a geometry octree to
partition the mesh. Each node of the octree is simpli-
fied with a bottom-up approach. The approach of Shaf-
fer and Garland [29] also decomposes the mesh with
an octree. It then assigns to each node a representative
vertex computed to minimize the approximation error.
Cignoni et al. [30] proposed to decompose the mesh
with a tetrahedral structure. Other methods were also
proposed to build parallel view dependent progressive
meshes [31, 32].

3. Overview

The POMAR compression algorithm performs three
main tasks.

Mesh decimation. The input model is first simplified
with halfedge collapses to generate discrete levels of de-
tail. The decimation stops when a coarse version of the
input model, called the base mesh, is obtained. All the
performed operations are kept in memory to allow the
later mesh reconstruction by the encoding steps.

Global level of detail compression. Starting from the
base mesh, the successive levels of detail generated by
the decimation are reconstructed by performing the re-
verse operations of the halfedge collapses, the vertex
splits. The symbols needed to rebuild the levels are en-
coded for the whole mesh, in the same way as a pro-
gressive compression algorithm. We call cluster a set of
vertices of the input mesh that hierarchically collapsed
into a common vertex during the decimation. The global
level of detail compression stops when, in the current
level of detail, there are as many vertices as desired ran-
dom accessible clusters. This level is called the base
clustered mesh.

Clustered level of detail compression. Starting from
the base clustered mesh, the levels of detail reconstruc-
tion assigns inserted vertices to clusters in function of
the vertex splits hierarchy. Each vertex of the base clus-
tered mesh has a corresponding random-accessible clus-
ter. The vertices that collapsed into a common vertex vc

of the base clustered mesh belong to the cluster of vc.
The independent encoding of the vertex splits for each
cluster enables the random-accessible decompression.

The mesh decompression happens in the same order
as the two compression steps. However, only the desired
regions of the mesh are decoded and reconstructed with
the constraint that there must be at maximum one level
of detail of difference between adjacent clusters.

vfrom

vto

vl

vr

vref

Halfedge collapse

Vertex split

vto

vl

vr

vref

Figure 2: A patch modified by halfedge collapse and vertex split op-
erations. The collapsed halfedge is in red.

4. Decimation

The aim of the decimation step is to generate dis-
crete levels of detail. The decimation operator used is
the halfedge collapse. It consists of merging a vertex
with one of its neighbours and removing the degener-
ated faces. A patch is the set of faces modified by an
halfedge collapse. We call v f rom the vertex that is going
to merge with the vertex vto, which does not move. Af-
ter the collapse, vre f is the vertex of the patch that makes
with vto the longest edge generated by the collapse. vl

and vr are the two vertices that are connected to v f rom

and vto before the collapse. vl is on the left of the col-
lapsed halfedge and vr on the right. All these vertices
are represented on Figure 2.

Figure 4: Examples of levels of detail generated by our decimation
algorithm.

To generate a new level of detail l, all the halfedges
that can be collapsed without violating the manifold

4



Level l 
Select an

unvisited vertex

from the FIFO 

Encode

vertex

splits 

Add neighbour

unvisisted vertices

to the FIFO 

Perform

vertex

splits 

Level l+1 

Entropy

coding 

Compr. data

of level l+1 

Connectivity symbols

Sv, Se, Sl, Sr

Geometry symbols

r

1 2 3
4

5

Figure 3: Encoding process of a level of detail.

property of the mesh are ranked according to an edge
length metric. The value of this metric corresponds to
the length of the edge vto vre f . The halfedges with the
smallest metric values are collapsed first. An halfedge
cannot be collapsed if its collapse would generate face
normal flips. We ensure that the normals are not altered
beyond a certain threshold. We verify for each face of
the patch that the cosine of the angle between the normal
before and after the collapse does not exceed a thresh-
old (set to 0.7 in our experiments). After a collapse, no
more halfedges that would modify the patch can be col-
lapsed for generation of the current level of detail. So
these halfedges are marked with a flag.

The generation of the new level of detail l is finished
when there are no more halfedge candidates to be col-
lapsed. The generation of the level l − 1 then begins
after having reset all the halfedge flags. In this way,
successive levels of detail are generated until the tar-
geted number of vertices for the base mesh (l = 0) is
reached.

Other existing decimation metrics, such as the Haus-
dorff distance in [10], the volume metric from [11] or
the well-known Quadric Error Metric [33], could be
used. Nevertheless, our simple edge length metric goes
together with the predictions involved in the compres-
sion scheme (see Section 5). Therefore, the generated
levels of detail can be efficiently compressed. Our dec-
imation scheme produces levels of detail with uniform
triangle sizes as illustrated by the Figure 4.

All the performed halfedge collapses are kept in
memory because the reverse vertex split operations will
have to be performed during the mesh compression.
Vertex positions are quantized before the reconstruction
and compression steps.

5. Compression and reconstruction

Starting from the base mesh (l = 0), the successive
levels of detail l of the mesh are reconstructed and en-
coded. The vertex splits, the reverse operations of the
halfedge collapses performed during the decimation, are

applied. A vertex must be split if it was the vto vertex
of an halfedge collapse operation performed during the
decimation of the current level of detail.

The reconstructed levels of detail are split into two
layers. The coarse levels are not clustered. During
the reconstruction, the mesh is uniformly refined as it
would be with a progressive mesh compression algo-
rithm. However, the finest levels of detail are clustered.
A cluster can be refined more or less than its neighbours.
This enables the random access during the decompres-
sion.

5.1. Global levels of detail encoding and reconstruction

The encoding process of a level of detail is illustrated
on Figure 3. For each level of detail, vertex splits are
first encoded before being performed. Two types of in-
formation need to be compressed to perform the same
operation during the decompression: the connectivity
and the geometry.

The connectivity information of a vertex split opera-
tion on a triangle mesh can be defined by three vertices:
vto, vl and vr. We made the choice to encode a vertex
split with one additional vertex: vre f . The reason is that
vre f can be easily predicted with the length of the edge
vto vre f . When vre f is known, vl and vr can be efficiently
encoded with offsets.

A deterministic traversal of the mesh vertices is per-
formed. It consists of a breadth-first traversal also car-
ried out by the decoder in the same order. In the base
mesh, the first halfedge of the first face is pushed into
a FIFO queue. This halfedge is selected since it can be
retrieved by the decoder with the base mesh data. It will
always be the first processed halfedge for all the global
levels of detail. To process a new vertex, an halfedge is
popped out the FIFO queue (Figure 3, step 1). The data
of the vertex it points to is encoded if this vertex has
not already been visited (Figure 3, step 2). Then, all the
outgoing halfedges of the current vertex are added to the
FIFO queue in clockwise order (Figure 3, step 3). The
traversal is continued by popping out another halfedge
from the FIFO queue.

5



1 2 3 4

10

vr

vl

vref
vto

vref
vl

vr

vl

vrefvr

vrefvl

vr

vto

vto
vto

11

vfrom

vfrom

vfrom

vfrom

sv: 1   
se: 3  
sl: 1
sr: 0

sv: 1, 0 
se: 3
sl: 1
sr: 0

sv: 1, 0, 1 
se: 3, 0
sl: 1, 0
sr: 0, 1

sv: ... 0, 0, 0, 0, 0, 0 

se: 3, 0
sl: 1, 0
sr: 0, 1

sv: ... 0, 0, 0, 2
se: 3, 0, 1
sl: 1, 0, 0
sr: 0, 1, 0

sv: ... 0, 0, 0, 2
se: 3, 0, 1, 2
sl: 1, 0, 0, 1
sr: 0, 1, 0, 0

16

45
6

7

8

9

5
6
7
8
9

12

sv: ... 0, 0, 0, 0 
se: 3, 0, 1, 2 
sl: 1, 0, 0, 1 
sr: 0, 1, 0, 0 

12

13

14

15

13
14
15

Figure 5: Encoding traversal. The vertices are iteratively processed by a deterministic traversal. The current vertex is in red. 1-15: Vertex splits are
encoded with the sv, se, sl and sr symbols. The symbols related to the current vertex are in bold. 16: Vertices are finally split once the encoding
traversal is finished.

For each vertex, we encode its number of splits, the
sv symbols. Thus, the vto vertices will be known by the
decoder. If the current vertex has a number of splits
different from zero, then the corresponding split(s) must
be encoded. The surrounding edges of vto are ranked
from the longest to the shortest. The second vertex of
these edges are the possible vre f vertices. This ranking
forms a stack, the longest edge being on the top of the
stack. The algorithm counts the number of edges it has
to unstack before getting the correct vre f . This count is
the se symbol and thus encodes vre f .

To encode the vl vertex, the algorithm simply counts
the number of vertices belonging to the patch between
vre f and vl and so obtains the sl symbols. The vr vertex
is encoded in the same way with the sr symbol.

The geometry information of a vertex split is the po-
sition of v f rom. It is encoded with the residual vector
r between the barycentre of the patch b and the posi-
tion of v f rom. This residual is projected in a local Frenet
frame. This frame is constructed with the direction of
the edge vto vre f and the average normal of the two faces
adjacent to the same edge as illustrated in Figure 6. To
avoid a post-quantization step and slightly reduce the
entropy, we use the bijection proposed in [34] to project
r from the global (x, y, z) frame to the local Frenet frame
(t1, t2,n).

Once all the split operations of the current level of de-

x

y

z

n

t1

t2

b

vfrom

r

vto

vl

vr

vref

Figure 6: Local Frenet frame (t1, t2,n) used to encode the geometry
residual r.

tail have been encoded, these operations are performed
(Figure 3, step 4). So, the level of detail l is obtained.
The encoding and then the reconstruction of the next
level l + 1 is performed in the same manner. An encod-
ing traversal is illustrated on Figure 5.

5.2. Clustered levels of detail encoding and reconstruc-
tion

The base clustered mesh is obtained once the mesh
contains the number of desired clusters for the random
accessibility. This corresponds to the level of detail lc.
In the base clustered mesh, each vertex is the parent
of one cluster. In the next level of detail, if a vertex
vc of the base clustered mesh is split, then the inserted
vertices will belong to the cluster of vc. In the follow-
ing levels, these vertices may also be split, thus adding

6



new vertices to the cluster of vc. In the end, the clus-
ter corresponding to vc will be the set of vertices of
the input mesh that are the descendant of vc by vertex
splits. The adjacency relations between the base clus-
tered mesh vertices are the same as the adjacency rela-
tions between their respective clusters.

To enable the random access during the decompres-
sion, the clusters are compressed independently. Sep-
arate deterministic traversals that encode the splits are
performed for each cluster instead of being performed
once for the whole mesh. In this way, only the vertex
splits related to the current cluster are encoded in its
data block.

For each cluster, the first halfedge to process needs to
be selected with a method also available to the decoder.
The same breadth-first traversal as during the global lev-
els of detail encoding is performed on the base clustered
mesh. When the current halfedge points to a unvisited
vertex, it is set as the first halfedge for the encoding of
the vertex cluster.

The encoding traversal of each cluster follows the
same principle as the encoding traversal of the global
levels of detail. The encoded data is also the same.
However, if a current halfedge points to a vertex belong-
ing to another cluster, it is simply omitted.

When the encoding traversal has been performed for
all the clusters, the vertices are split to reconstruct the
new level. The inserted vertices inherit their cluster id
from their parents. The encoding of the next clustered
level of detail then starts.

To split a vertex vto and obtain v f rom, the patch must
be in the same configuration as during the simplifica-
tion. The vertices vl, vr and vre f among others must be
present. vto, vl, vr and vre f belong to the level l−1, while
v f rom belongs to the level l. If some patch vertices be-
long to neighbouring clusters, the decoder will simply
need to reconstruct these neighbouring clusters at the
level of detail l − 1. The data dependency does not in-
clude the same level of detail on the whole mesh as with
standard progressive mesh compression algorithms. To
decompress a cluster Ck at a set level l, Ck and all its
adjacent clusters must be reconstructed at the level l−1.
The V-partition multiresolution model described in [35]
also uses this principle to generate smooth transitions
between mesh partitions belonging to several levels of
detail.

5.3. Entropy coding and compressed file

The connectivity symbols sv, se, sr and sl are com-
pressed by a range coder [36] with a quasi-static prob-
ability model for each symbol (Figure 3, step 5). The

Base mesh

Header

Global LOD n°1

Global LOD n°2

Global LOD n°3

Data sizes of each cluster

LOD n°lc+1

...

...

...

C
lu

st
e
r 

n
°1

C
lu

st
e
r 

n
°2

...

LOD n°lc+2

LOD n°lc+3

LOD n°lc+1

LOD n°lc+2

LOD n°lc+3

Figure 7: Structure of the compressed file.

tangential components of r and its normal components
are also encoded by a range coder. One model is used
for the tangential components and a different one for the
normal.

The compressed file starts with header information
such as the mesh bounding box and the number of quan-
tization bits. The base mesh is then stored and not com-
pressed. The compressed data of all the global levels of
detail is saved just after, as it allows the restoration of
the base clustered mesh. To perform random accessible
decompression, the decoder needs to know the position
in the file of each data block of compressed cluster data.
Hence the size of each cluster compressed data has to be
stored to generate a location index. The main bulk of the
file is stored at end, containing the compressed data of
all the clusters. The Figure 7 illustrates the compressed
file structure. In a transmission context, each block of
the file can be streamed on-demand. Thus, only the data
required to decompress the requested parts of the mesh
are transmitted to the client.

6. Decompression

The decompression starts by reconstructing the base
mesh. The global levels of detail are then decompressed
until the base clustered mesh is obtained. A map of the
required level of detail M for each cluster Ck must then
be generated. The user selects the set Rc of clusters he
is interested in by picking their corresponding vertex in

7



the base clustered mesh. He then chooses at which clus-
tered level of detail lk he wants to decompress the se-
lected clusters:

∀Ck ∈ Rc,M(Ck) = lk.

This map must be completed with the following con-
straint: there must be at maximum one level of detail
of difference between a cluster and its neighbours. This
completion can be expressed with the formula:

M(Ck) = max(
{

max
∀Cl∈Rc

(M(Cl) − dt(Ck,Cl)), 0
}

)

where dt(Ck,Cl) is the minimum topological distance
in number of edges between the parent vertex of the
cluster Ck and the parent vertex of the cluster Cl in the
base clustered mesh. In practice, this map is generated
with an algorithm that, starting from the parent vertex
of each cluster of Rc, traverses all the base clustered
mesh vertices and assigns them a required level. Fig-
ure 8 shows an example of a required levels of detail
map and the obtained decompressed mesh.

Once the map M is complete, the decompression of
the clustered levels of detail begins. The random ac-
cess to each cluster data block in the compressed file
is permitted thanks to the location table generated with
the stored size of each cluster data block. When the
required clustered level of detail of one cluster is null,
then its data block is completely omitted.

For each clustered level of detail, only the required
levels for all the refined clusters are decompressed. The
levels are then reconstructed as during the compression.
The difference is that only the decompressed parts of the
mesh are refined.

Figure 8: Required levels of detail map M displayed on the base clus-
tered mesh and the obtained decompressed mesh. The two black ver-
tices have been chosen to decompress their clusters at the finest levels
of detail. The red areas of the base clustered mesh are decompressed
at a high level of detail while the blue areas are decompressed at a low
level of detail.

The main point of the POMAR decompression is that
it is possible to have up to one level of detail of differ-

ence between one cluster and its neighbours. So, the de-
compression can generate a smooth transition between
the clusters that the user wants to see at the highest level
of detail and the clusters not of interest. The shape of the
triangles in the partially decompressed meshes is good
as shown in Figure 9 because they have been generated
by the decimation step guided by the metric.

Figure 9: Decompression example of the Ramesses model. On the
top image, the vertices belonging to the same cluster have the same
colour. The red cluster on the eye was selected to be decompressed at
the highest level of detail.

7. Choice of the number of clusters

The choice of the number of clusters is important as
it directly influences the random accessibility, the local-
ity of the refinements and the compression performance
of the algorithm. The number of clusters is set by the
level of detail lc of the base clustered mesh. The base
clustered mesh is the coarsest level of detail the user
has access before selecting the clusters to refine more.
We will now study the impact of the value of lc on the
random accessibility with two examples. Whatever the
value of lc is, the total number of levels of detail is al-
ways constant.

8



A low value of lc means a low number of clusters.
There will be a high number of clustered levels of de-
tail, but during the decompression there can be only one
level of detail of difference between two neighbour clus-
ters. Therefore, if a cluster of the mesh is selected to be
decompressed at the finest level of detail, a significant
part of the mesh will have to be decompressed to respect
this constraint.

If a high value of lc is chosen, the base clustered mesh
will be very refined and there will be a low number of
clustered levels of detail. The full decompression of one
cluster will only impact a small region of the mesh and
there will be a weak gradation between the coarse and
refined clusters.

The consequence of this behaviour is that, in order to
guarantee a correct random accessibility and good com-
pression rates, we advise to choose lc so that the num-
ber of clusters is between 1% and 5% of the input mesh
number of vertices. Figure 10 illustrates the influence of
the number of clusters on the random accessibility and
the locality of the refinements. We also study the im-
pact of the number of clusters on the compression rates
in Section 8.

Figure 10: Decompression examples of the dinosaur model with a
high (left) and low (right) number of clusters. For both cases, a cluster
on the end of the nose was selected to be decompressed at the highest
level of detail.

8. Experimental results

We implemented our algorithm using the halfedge
data structure from OpenMesh [37] and the range coder
from Michael Schindler [36]. We provide in Table 1 ex-
perimental results obtained with our first implementa-
tion of the POMAR codec, the progressive and random
accessible algorithm of the CHuMI viewer [12] and the
random accessible hierarchical approach [7]. Experi-
ments ran on a desktop computer with an Intel Core
i7 CPU at 2.80Ghz with 8GB of RAM. Comparing the
compression performance of the POMAR codec with
the performance of the CHuMI viewer is difficult, as
both algorithms do not provide the same type of ran-
dom accessibility. Nevertheless, each cluster generated
by our compression algorithm can be decompressed in-
dependently. This is also the case of each nSP-cell of

the CHuMI viewer. Therefore we tried, for each tested
mesh, to have approximatively the same number of clus-
ters as the number of nSP-cells. Some models could not
be compressed with the hierarchical approach as it does
not handle meshes with a genus superior to zero or the
compression took too much time to complete.

We implemented a selective decompression applica-
tion to demonstrate the features of our scheme. The user
selects, by drawing a rectangle, the clusters he wants
to decompress at the highest level of detail on the base
clustered mesh by their parent vertices. The map M of
the required levels of detail for each cluster is computed
as described in Section 6. This experiment is captured
in the additional video.

We studied for one mesh the influence of the number
of clusters on the compression rate. Figure 11 shows
the obtained curve. The compression performance de-
creases when the number of clusters increases. This re-
lation is asymptotically linear with a significant slope.
We indeed use a different quasi-static probability model
to independently build the probability tables of the en-
tropy coder for each level of detail and each cluster. The
more clusters there are, the less the models can well
adapt to the data. As a consequence, the choice of the
number of clusters must be taken with care as it also
influences the random-accessibility (see Section 7).

0 2000 4000 6000 8000 10000 12000 14000
19,5

20,5

21,5

22,5

23,5

24,5

25,5

# clusters

C
o

m
p

re
ss

io
n

 r
a

te
 (

b
p

v)

Figure 11: Compression rate in function of the number of clusters for
the Igea model (134345 vertices). Geometry in quantized to 12 bits.

The POMAR scheme can also be used in pure pro-
gressive compression mode. In this case, only global
levels of detail are encoded as described in Section 5.1.
We measured the rate-distortion performance of our al-
gorithm and previous approaches in progressive mode.
The results are shown on Figure 12.

9



Model # vertices POMAR CHuMI [19] Hierarchical [7]
# clust. c. g. tot. time # cells tot. time tot. time

Igea 134,345 5192 8.4 15.0 23.4 7s 5249 27.4 3s 27.19 21s
Armadillo 172,974 9268 9.1 15.0 24.1 9s 9217 26.0 3s 24.7 46s
Fertility 241,607 2551 8.1 11.8 19.8 14s 2561 22.7 5s - -
Raptor 1,000,080 4869 7.6 7.0 14.6 47s 4801 16.4 10s - -

Ramesses 826,266 4480 7.6 8.4 16.0 50s 4481 17.4 11s 22.4 2m 44s
Neptune 2,003,932 10498 7.7 5.7 13.5 2m 7s 10497 14.7 24s - -
Dragon 3,609,600 14383 7.4 5.7 13.0 3m 40s 14337 15.0 27s 20.0 53m 13s

Statuette 4,999,996 19094 7.9 5.9 13.8 4m 51s 19073 15.0 35s - -

Table 1: Experimental compression results of the POMAR codec, the CHuMI viewer and the hierarchical approach. Geometry is quantized to 12
bits. The compression rates are in bits per vertex. c. stands for connectivity and g. stands for geometry.

0 2 4 6 8 10 12 14 16 18 20
0,0000

0,0002

0,0004

0,0006

POMAR

Valence coder [11]

Wavemesh [14]

Octree coder [13]

IPR [15]

PPMC [16]

Rate (bpv)

D
is

to
rt

io
n

 (
m

a
x 

o
f t

h
e

 R
M

S
 d

is
ta

n
ce

s 
/ b

o
u

n
d

in
g

 b
o

x 
d

ia
g

o
n

a
l)

Figure 12: Rate-distortion curves for the progressive compression of
the rabbit model (67039 vertices) with a 12 bit quantization.

9. Comparisons and discussion

9.1. Progressive and random accessible compression

Compression rates. In the conditions described in
Section 8, the results of Table 1 show that, for the tested
models, POMAR always provides better compression
rates than the CHuMI viewer. The duplication of the
vertices belonging to several nSP-cells by the CHuMI
encoder may explain why our algorithm provides better
compression rates. POMAR does not duplicate any ge-
ometry or connectivity information. We expect that the
scheme of Du et al. [20] would provide slightly better
results than the CHuMI viewer with the same random
access granularity. Both algorithms are a random acces-
sible extension of the original Gandoin and Devilliers
algorithm [12], but the algorithm of Du et al. does not

duplicate border vertices. The compression rates pro-
vided by POMAR are about 10 bits per vertex lower
than the rates given by the approach of Kim et al [17]
and the cluster-based approach of Maglo et al. [21] does
not support the high granularity random access of our
experiments.

Random-accessibility granularity. With POMAR,
to decompress a cluster at a given level of detail l,
the global levels of detail must be fully decompressed
and the neighbour clusters must be decompressed at the
level l−1. This constraint spreading on the mesh affects
the locality of the refinements and the random-access.
To decompress a cell with the approach of Du et al. [20],
the top tree and all the border vertices of previous cells
in the dependency list must be decoded. Consequently,
if the requested cell is at the end of the dependency list,
a significant number of border vertices must be decom-
pressed. The algorithm of Kim et al. [17] allows to split
a vertex with no neighbourhood restriction. However,
the hierarchy allowing selective refinements is divided
into data blocks, which are the atomic unit for the ran-
dom accessibility. Consequently, some vertices must be
decompressed even if they are not inserted to the de-
compressed model. The CHuMI viewer [19] can de-
compress a nSP-cell independently of its neighbours if
its parent cells have been decoded. The charts of cluster-
based approach [21] can also be decompressed indepen-
dently after their border vertices have been decoded.

Mesh quality. POMAR has the advantage of re-
constructing without any post-processing one piece de-
compressed models with good triangle shapes. All the
decompressed triangles come directly from the deci-
mation and therefore respect its metric. The CHuMI
viewer [19] and the cluster-based approach [21], how-
ever, require a post-processing algorithm to stitch adja-
cent nSP-cells and clusters together. The chart stitching
algorithm of the cluster-based approach [21] sometimes

10



generates artefacts due to normal flips. Regarding the
CHuMI viewer, the algorithm that builds the transitions
between adjacent nSP-cells with different levels of pre-
cision generates anisotropic triangles, as shown on the
Figure 5 in [19]. The approach of Du et al. [20] does not
need any post-processing step to stitch adjacent cells but
anisotropic transition triangles between the border ver-
tices and the inner vertices of the cell are generated by
the decompression.

Progressive compression algorithms based on space
subdivision are known to generate decompressed mod-
els that have a high distortion at low rates because of
the low quantization. This fact is illustrated by the rate-
distortion curve of the octree coder on Figure 12. To
remove this well-known blocky effect, Jamin et al. [19]
proposed for the CHuMI viewer to encode some con-
nectivity information before the geometry, thus increas-
ing the complexity of the compression algorithm. Du et
al. [20] did not address this issue.

Compression times. The POMAR decimation algo-
rithm is based on a ranking of the halfedge candidates
to be collapsed. The mesh simplification needs more
time than the CHuMI encoder that uses a spatial kd-tree
decomposition to simplify the mesh. As expected, the
approach of Du et al. [20] is reported as having similar
compression times than the CHuMI encoder.

Decompression times. In our experiments, the full
decompression of one cluster and its dependencies of
the Ramesses model, as shown on Figure 9, takes with
the global levels of detail decompression approximately
280 ms. The selective decompression experiments of
the additional video show that the decompression is
fast enough to allow interactive decompression like the
CHuMI viewer [19] and the cluster-based approach
[21]. The schemes of Du et al. [20] and Kim et al.
[17], however, did not demonstrate their ability to per-
form interactive decompression.

9.2. Progressive compression
As shown on Figure 12, compared to previous pro-

gressive compression approaches, POMAR achieves
competitive rate-distortion performance at low rate.
However, the final compression rate, which is illustrated
by the right most point of the curve, is worse than the
rates obtained by progressive coders. The reason is that
our connectivity compression scheme, needed for the
progressive random access to clustered levels, is costly.
It uses 4 different symbols (sv, se, sl and sr) while ap-
proaches like the progressive valence encoder [11] use
only one symbol. Nevertheless, we would like to point
out that another quality of the POMAR encoder is its
simplicity of implementation.

9.3. Data structures for interactive visualization

As seen in Section 2.4, progressive and random-
accessible mesh data structures have been proposed in
the literature for the interactive visualization of large
meshes. Most of them were designed to be compact
since they must allow the storage of huge meshes either
in main memory, in GPU memory or on disk. Their
key concept is to enable fast mesh adaptation mecha-
nisms by a quick access to a multiresolution data struc-
ture. Consequently, most of these data structures are not
compressed. In the recent work of Derzapf and Guthe
[32], which integrates a compressed data structure, the
connectivity of the mesh is stored at about 4 bytes per
vertex, while our scheme requires about 1 byte. Even
if the scheme described in [32] stores the normal of the
mesh vertices while POMAR does not, it saves a mesh
with around 11 to 14 bytes per vertex while POMAR
requires around 3 bytes per vertex.

The current implementation of POMAR supports se-
lective refinement of the mesh. However, when the se-
lection slightly changes, the decoder cannot yet perform
delta coarsening and refinement as data structure for in-
teractive visualization can. The mesh access is slower
than with the previously described GPU data structures.
It also allows less flexible mesh adaptation. Yet, we
think that the much higher compression performance of
our approach with its relative progressive and random
access to the data is particularly useful for efficient mesh
storage and transmission.

10. Conclusion and future work

We presented in this paper POMAR, our new pro-
gressive and random accessible manifold triangle mesh
compression algorithm. Unlike previous approaches, it
is not based on a space-subdivision data structure or
a initial segmentation of the input model. Experimen-
tal results show that our algorithm compares favourably
with previous progressive and random accessible ap-
proaches in terms of compression rates with similar ran-
dom access. The POMAR decompression algorithm al-
lows the generation of a smooth transition between the
fine and coarse decompressed regions of the mesh.

An adaptation of POMAR encoder would enable out-
of-core compression without impacting the final com-
pression rate. The mesh decimation would be per-
formed out-of-core such as in [24]. The reconstruction
and the compression of global levels of detail would be
performed in-core as described in Section 5.1. For the
clustered levels of detail, each cluster would be recon-
structed and compressed separately. As there must be at

11



most one level of detail of difference between adjacent
clusters, the compression of one cluster would involve
the partial reconstruction of its neighbours.

Future work also include the generalisation of the al-
gorithm to non-manifold meshes by replacing the ver-
tex split operator by generalized vertex splits. A deci-
mation algorithm that better preserves the mesh shape
and its adapted compression algorithm could also be in-
vestigated. Finally, we also wish to work on a mixed
CPU/GPU implementation of our framework to enable
automatic refinement and coarsening of the model for
interactive visualization while maintaining good a com-
pression performance.

Ackowledgements

This work has been founded by French National
Research Agency (ANR) through COSINUS program
(project COLLAVIZ no. ANR-08-COSI-003) and the
LRC with the CEA DAM DIF. The models are cour-
tesy of the AIM@SHAPE Repository and the Stanford
Computer Graphics Laboratory.

References

[1] P. Alliez, C. Gotsman, Recent advances in compression of 3d
meshes, in: Advances in Multiresolution for Geometric Mod-
elling, Mathematics and Visualization, 2005, pp. 3–26.

[2] M. Isenburg, P. Lindstrom, Streaming meshes, in: Proc. of Vi-
sualization, 2005, pp. 231–238.

[3] M. Isenburg, P. Lindstrom, J. Snoeyink, Streaming compression
of triangle meshes, in: Proc. of the Eurographics symposium on
Geometry processing, 2005.

[4] S. Choe, J. Kim, H. Lee, S. Lee, Random accessible mesh com-
pression using mesh chartification, IEEE Transactions on Visu-
alization and Computer Graphics 15 (1) (2009) 160 –173.

[5] H. Lee, P. Alliez, M. Desbrun, Angle-analyzer: A triangle-quad
mesh codec, Computer Graphics Forum 21 (3) (2002) 383–392.

[6] S.-e. Yoon, P. Lindstrom, Random-accessible compressed trian-
gle meshes, IEEE Transactions on Visualization and Computer
Graphics 13.

[7] C. Courbet, C. Hudelot, Random accessible hierarchical mesh
compression for interactive visualization, in: Symposium on
Geometry Processing, 2009.

[8] H. Hoppe, Progressive meshes, in: Proc. of SIGGRAPH, 1996,
pp. 99–108.

[9] G. Taubin, A. Guéziec, W. Horn, F. Lazarus, Progressive forest
split compression, in: Proc. of SIGGRAPH, 1998, pp. 123–132.

[10] R. Pajarola, J. Rossignac, Compressed progressive meshes,
IEEE Transactions on Visualization and Computer Graphics 6
(2000) 79–93.

[11] P. Alliez, M. Desbrun, Progressive compression for lossless
transmission of triangle meshes, in: Proc. of SIGGRAPH, 2001,
pp. 195–202.

[12] P.-M. Gandoin, O. Devillers, Progressive lossless compression
of arbitrary simplicial complexes, in: Proc. of SIGGRAPH,
2002, pp. 372–379.

[13] J. Peng, C.-C. J. Kuo, Geometry-guided progressive lossless 3d
mesh coding with octree (ot) decomposition, in: Proc. of SIG-
GRAPH, 2005, pp. 609–616.

[14] S. Valette, R. Prost, Wavelet-based progressive compression
scheme for triangle meshes: Wavemesh, IEEE Transactions on
Visualization and Computer Graphics 10 (2004) 123–129.

[15] S. Valette, R. Chaine, R. Prost, Progressive lossless mesh com-
pression via incremental parametric refinement, in: Proc. of the
Symposium on Geometry Processing, 2009, pp. 1301–1310.

[16] A. Maglo, C. Courbet, P. Alliez, C. Hudelot, Progressive com-
pression of manifold polygon meshes, Computers & Graphics
36 (5) (2012) 349–359.

[17] J. Kim, S. Choe, S. Lee, Multiresolution random accessible
mesh compression, Computer Graphics Forum 25 (3) (2006)
323–331.

[18] J. Kim, S. Lee, Truly selective refinement of progressive
meshes, in: Proc. of Graphics interface, 2001, pp. 101–110.

[19] C. Jamin, P.-M. Gandoin, S. Akkouche, Chumi viewer: Com-
pressive huge mesh interactive viewer, Computers & Graphics
33 (4) (2009) 542 – 553.

[20] Z. Du, P. Jaromersky, Y.-J. Chiang, N. Memon, Out-of-core pro-
gressive lossless compression and selective decompression of
large triangle meshes, in: Data Compression Conference, 2009,
pp. 420 –429.

[21] A. Maglo, I. Grimstead, C. Hudelot, Cluster-based random ac-
cessible and progressive lossless compression of colored trian-
gular meshes for interactive visualization., in: Proc. of Com-
puter Graphics International, 2011.

[22] H. Lee, G. Lavoué, F. Dupont, Rate-distortion optimization for
progressive compression of 3d mesh with color attributes, The
Visual Computer 28 (2012) 137–153.

[23] H. Hoppe, View-dependent refinement of progressive meshes,
in: Proc. of SIGGRAPH, 1997, pp. 189–198.

[24] H. Hoppe, Smooth view-dependent level-of-detail control and
its application to terrain rendering, in: Proc. of Visualization,
1998, pp. 35–42.

[25] R. Pajarola, Fastmesh: efficient view-dependent meshing, in:
Proc. of Pacific Conference on Computer Graphics and Appli-
cations, 2001, pp. 22–30.

[26] R. Pajarola, C. DeCoro, Efficient implementation of real-
time view-dependent multiresolution meshing, Visualization
and Computer Graphics, IEEE Transactions on 10 (3) (2004)
353–368.

[27] S.-E. Yoon, B. Salomon, R. Gayle, D. Manocha, Quick-vdr: in-
teractive view-dependent rendering of massive models, in: IEEE
Visualization, 2004, pp. 131 – 138.

[28] M. Guthe, P. Borodin, R. Klein, Efficient view-dependent out-
of-core visualization, in: The 4th International Conference on
Virtual Reality and its Application in Industry, 2003, pp. 428–
438.

[29] E. Shaffer, M. Garland, A multiresolution representation for
massive meshes, IEEE Transactions on Visualization and Com-
puter Graphics 11 (2) (2005) 139–148.

[30] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
R. Scopigno, Adaptive tetrapuzzles: efficient out-of-core con-
struction and visualization of gigantic multiresolution polygonal
models, in: Proc. of SIGGRAPH, 2004, pp. 796–803.

[31] L. Hu, P. V. Sander, H. Hoppe, Parallel view-dependent refine-
ment of progressive meshes, in: Proc. of the symposium on In-
teractive 3D graphics and games, 2009, pp. 169–176.

[32] E. Derzapf, M. Guthe, Dependency-free parallel progressive
meshes, Computer Graphics Forum (2012) 2288–2302.

[33] M. Garland, P. S. Heckbert, Surface simplification using quadric
error metrics, in: Proc. of SIGGRAPH, 1997, pp. 209–216.

[34] H. Lee, G. Lavoué, F. Dupont, Adaptive coarse-to-fine quanti-

12



zation for optimizing rate-distortion of progressive mesh com-
pression, in: Proc. of the Vision, Modeling, and Visualization
Workshop, 2009.

[35] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
R. Scopigno, Batched multi triangulation, in: Proc. of Visual-
ization, 2005, pp. 207–214.

[36] M. Schindler, A fast renormalisation for arithmetic coding, in:
Proc. of the Data Compression Conference, 1998, 1998, p. 572,
http://www.compressconsult.com/rangecoder/.

[37] M. Botsch, S. Steinberg, S. Bischoff, L. Kobbelt, Open-mesh a
generic and efficient polygon mesh data structure, in: OpenSG
Symposium, 2002, http://www.openmesh.org/.

13


